If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2-35x=0
a = 4.9; b = -35; c = 0;
Δ = b2-4ac
Δ = -352-4·4.9·0
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-35}{2*4.9}=\frac{0}{9.8} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+35}{2*4.9}=\frac{70}{9.8} =7+1/7 $
| -8d+13d-15d=-20 | | 4(x=7)=2x=46 | | 26=54x-5x^2 | | 49+7y=7(1+4y) | | 1-3x+4x=2+1-5x+5x | | x+4.2=11.7 | | 3p-5=17 | | 3g-6=18 | | -6(x+7)=-66 | | -13j+15j=20 | | Y=-4x2-8x-7 | | 49=-7/5w | | 14+1+6k-3=5k+5 | | 2y=244.5 | | -18+3(5x-2)+8=0 | | 2(x=8)=2 | | 55+3x2=13x-3 | | 2y=244/5 | | 4x+0.88=5.24 | | 3x-4x+3=3x+7 | | 9q-6q-1=14 | | 13x=26x | | 6p-2p=-16+1-3p+4p | | 40r-360=10r+30 | | 7(f-5)=42 | | 5(x+7)=-70 | | 3x-0.4=8 | | 2/3(-9x+3)=14 | | 20-(2×6)+8÷4=n | | 5(x+4)=2x+2 | | x-3/4x+1=x+4/x | | -2+4r=-6+2r |